Respuesta :

Answer:

46.64 hours

Explanation:

The amount, A(t) of radioactive material with a half-life of t(0.5) remaining after time t is modeled using the formula below:

[tex]A(t)=A_0\mleft(\frac{1}{2}\mright)^{\frac{t}{t_{(0.5)}}}[/tex]

• A(t)=quantity of the substance remaining

,

• A(0)=initial quantity of the substance

,

• t=time elapsed

,

• t(0.5)=half life of the substance

In our case:

• A(t)=350 mg

,

• A(0)=500 mg

,

• t = 24 hours

Substitute into the formula above to find the half-life, t(0.5).

[tex]\begin{gathered} 350=500\mleft(\frac{1}{2}\mright)^{\frac{24}{t_{1/2}}} \\ \text{Divide both sides by 500} \\ \frac{350}{500}=\mleft(\frac{1}{2}\mright)^{\frac{24}{t_{1/2}}} \end{gathered}[/tex]

Take the natural logarithm of both sides.

[tex]\begin{gathered} \ln (\frac{350}{500})=\ln (\frac{1}{2})^{\frac{24}{t_{1/2}}} \\ \frac{24}{t(0.5)}\ln (\frac{1}{2})=\ln (\frac{350}{500}) \end{gathered}[/tex]

Divide both sides by ln(1/2).

[tex]\begin{gathered} \frac{24}{t(0.5)}=\frac{\ln(\frac{350}{500})}{\ln(\frac{1}{2})} \\ \implies\frac{t(0.5)}{24}=\frac{\ln(\frac{1}{2})}{\ln(\frac{350}{500})} \end{gathered}[/tex]

Multiply both sides of the equation by 24.

[tex]\begin{gathered} \implies t(0.5)=24\times\frac{\ln(\frac{1}{2})}{\ln(\frac{350}{500})} \\ t(0.5)=46.64\text{ hours} \end{gathered}[/tex]

The half-life of the radioactive element is approximately 46.64 hours.

RELAXING NOICE
Relax