A 0.75 kg object is experiencing a net force of 25 N while traveling in a circle at avelocity of 28.6 m/s. What is the radius of its motion?

Respuesta :

Answer:

24.54 m

Explanation:

The net force in a circular motion is equal to

[tex]\begin{gathered} F_{net}=ma_c \\ F_{net}=m\cdot\frac{v^2}{r} \end{gathered}[/tex]

Where m is the mass, v is the velocity and r is the radus. Solving fror r, we get

[tex]\begin{gathered} F_{net}\cdot r=m\cdot v^2 \\ \\ r=\frac{m\cdot v^2}{F_{net}} \end{gathered}[/tex]

Now, we can replace m = 0.75 kg, v = 28.6 m/s and Fnet = 25 N to get

[tex]\begin{gathered} r=\frac{0.75\text{ kg}\cdot(28.6\text{ m/s\rparen}^2}{25\text{ N}} \\ \\ r=24.54\text{ m} \end{gathered}[/tex]

Therefore, the radius of te motion is 24.54 m

ACCESS MORE
EDU ACCESS