when combining like terms, do i do 3x^2 plus negative 2x^2? or does the sign change to addition, 3x^2 plus 2x^2?

Let's start using this property:
[tex]\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}[/tex]In this case:
[tex]\begin{gathered} a=3x^2-2x-1 \\ c=-2x^2+x-5 \\ b=x-5 \\ so\colon \\ \frac{3x^2-2x-1}{x-5}+\frac{-2x^2+x-5}{x-5}=\frac{(3x^2-2x-1)+(-2x^2+x-5)}{x-5} \end{gathered}[/tex]Now, let's add like terms in the numerator:
[tex]\begin{gathered} \frac{3x^2-2x-1-2x^2+x-5}{x-5}=\frac{(3x^2-2x^2)+(-2x+x)+(-1-5)}{x-5} \\ \to\frac{x^2-x-6}{x-5} \end{gathered}[/tex]For the numerator:
[tex]x^2-x-6[/tex]The factors of -6 that sum to -1 are 2 and -3, therefore:
[tex]x^2-x-6=(x+2)(x-3)[/tex]Hence:
[tex]\frac{x^2-x-6}{x-5}=\frac{(x+2)(x-3)}{x-5}[/tex]