Given:
[tex]f(x)=-x^2+3x+1[/tex][tex]The\text{ points are x=2 and x=5.}[/tex]Aim:
We need to find the average rate of change of f(x).
Explanation:
The formula to find the average rate of change is
[tex]\frac{f(b)-f(a)}{b-a}[/tex]Here b=5 and a=2.
Substitute x=2 in the function f(x) to find f(2).
[tex]f(2)=-(2)^2+3(2)+1[/tex][tex]f(2)=-4+6+1=3[/tex]Substitute x=5 in the function f(x) to find f(5).
[tex]f(5)=-(5)^2+3(5)+1[/tex][tex]f(5)=-25+15+1[/tex][tex]f(5)=-9[/tex][tex]Substitue\text{ a=2, b=5, f\lparen2\rparen=3 and f\lparen5\rparen=-9 in }\frac{f(b)-f(a)}{b-a}.[/tex][tex]\frac{f(b)-f(a)}{b-a}=\frac{-9-3}{5-2}=\frac{-12}{3}=-4.[/tex]The average rate of change of f(x) is -4.
Final answer:
The average rate of change of f(x) is -4.