Respuesta :

The given equation is:

[tex]x^3+64=0[/tex]

The equation is a sum of two(2) cubes which can be further simplified to be:

[tex]x^3+4^3=0[/tex]

i) Hence, a=x and b=4

Factorization of sum of two(2) cubes is given by the equation;

[tex]x^3+y^3=(x+y)(x^2-xy+y^2)[/tex]

Relating this to the given equation, we have:

[tex]\begin{gathered} x^3+64=0 \\ x^3+4^3=0 \\ \Rightarrow(x+4)(x^2-4x+16)=0 \end{gathered}[/tex]

ii) Hence, the factor completely is:

[tex](x+4)(x^2-4x+16)=0[/tex]

iii) To find the real root,we have;

[tex]\begin{gathered} x+4=0 \\ x=-4 \end{gathered}[/tex]

Hence, the real root is x = -4

RELAXING NOICE
Relax