Respuesta :

The Properties of Logarithms are shown below:

• a)

To rewrite the first logarithm, we have to remember that:

[tex]\frac{3}{4}=0.75[/tex]

Therefore, we can rewrite the expression as follows:

[tex]\log _a(0.75)=\log _a(\frac{3}{4})[/tex]

Using the property of division of the logarithms we get:

[tex]=\log _a(\frac{3}{4})=\log _a(3)-\log _a(4)[/tex]

Replacing the given values:

[tex]=0.62-0.78=-0.16[/tex]

• b)

Also, if we multiply 3 times 4 we get 12. Thus, we can rewrite the second expression:

[tex]\log _a(12)=\log _a(3\times4)[/tex]

Using the multiplication property of the logarithm:

[tex]=\log _a(3\times4)=\log _a(3)+\log _a(4)[/tex]

Replacing the values:

[tex]=0.62+0.78=1.4[/tex]

• c)

Finally, for the last expression we have to remember that a square root can also be written as an exponent:

[tex]\log _a(\sqrt[]{3})=\log _a(3^{\frac{1}{2}})[/tex]

Then, using the exponentiation property of the logarithms we can rewrite that last expression:

[tex]=\log _a(3^{\frac{1}{2}})=\frac{1}{2}\log _a(3)[/tex]

As we already know the value of loga(3), we can just replace it and get the result:

[tex]=\frac{1}{2}\cdot0.62=0.31[/tex]

Answer:

• a) -0.16

,

• b) 1.4

,

• c) 0.31

Ver imagen JulietteZ65270
RELAXING NOICE
Relax