I have a log problem that deals with properties of logarithms picture included

The Properties of Logarithms are shown below:
• a)
To rewrite the first logarithm, we have to remember that:
[tex]\frac{3}{4}=0.75[/tex]Therefore, we can rewrite the expression as follows:
[tex]\log _a(0.75)=\log _a(\frac{3}{4})[/tex]Using the property of division of the logarithms we get:
[tex]=\log _a(\frac{3}{4})=\log _a(3)-\log _a(4)[/tex]Replacing the given values:
[tex]=0.62-0.78=-0.16[/tex]• b)
Also, if we multiply 3 times 4 we get 12. Thus, we can rewrite the second expression:
[tex]\log _a(12)=\log _a(3\times4)[/tex]Using the multiplication property of the logarithm:
[tex]=\log _a(3\times4)=\log _a(3)+\log _a(4)[/tex]Replacing the values:
[tex]=0.62+0.78=1.4[/tex]• c)
Finally, for the last expression we have to remember that a square root can also be written as an exponent:
[tex]\log _a(\sqrt[]{3})=\log _a(3^{\frac{1}{2}})[/tex]Then, using the exponentiation property of the logarithms we can rewrite that last expression:
[tex]=\log _a(3^{\frac{1}{2}})=\frac{1}{2}\log _a(3)[/tex]As we already know the value of loga(3), we can just replace it and get the result:
[tex]=\frac{1}{2}\cdot0.62=0.31[/tex]Answer:
• a) -0.16
,• b) 1.4
,• c) 0.31