Number of adults: x
Number of children: y
Concert tickets:
$24.75 for 1x
$16.00 for 1y
Total: $171.75
[tex]24.75x+16.00y=171.75[/tex]Museum tickets:
$8.25 for 1x
$4.50 for 1y
Total: $54.75
[tex]8.25x+4.50y=54.75[/tex]To find the number of adults and chidren use the next system of equations:
[tex]\begin{gathered} 24.75x+16.00y=171.75 \\ 8.25x+4.50y=54.75 \end{gathered}[/tex]Solve x in the first equation:
[tex]\begin{gathered} 24.75x=171.75-16.00y \\ x=\frac{171.75}{24.75}-\frac{16.00y}{24.75} \end{gathered}[/tex]Substitute the x in the second equation for the value you get above:
[tex]8.25(\frac{171.75}{24.75}-\frac{16.00y}{24.75})+4.50y=54.75[/tex]Solve y:
[tex]\begin{gathered} 57.25-\frac{132y}{24.75}+4.50y=54.75 \\ \\ -\frac{132y}{24.75}+4.50y=54.75-57.25 \\ \\ \frac{-132y+111.375y}{24.75}=-2.5 \\ \\ -132y+111.375y=-2.5(24.75) \\ -20.625y=-61.875 \\ y=\frac{-61.875}{-20.625} \\ \\ y=3 \end{gathered}[/tex]Use the value of y= 3 to solve x:
[tex]\begin{gathered} x=\frac{171.75}{24.75}-\frac{16.00(3)}{24.75} \\ \\ x=\frac{171.75}{24.75}-\frac{48}{24.75} \\ \\ x=\frac{123.75}{24.75} \\ \\ x=5 \end{gathered}[/tex]