the points are not collinear
Explanation
Step 1
Let
A(1,3)
B(0,2)
C(-4,0)
to know if the segments AB and BA are collinear, they must have the same slope if they are
[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{where} \\ P1(x_1,y_1) \\ P2(x_2,y_2) \\ \end{gathered}[/tex]for segment AB
let
P1=A(1,3)
P2=B(0,2)
[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ slope_{AB}=\frac{2-3}{0-1}=\frac{-1}{-1}=1 \\ slope_{AB}=1 \end{gathered}[/tex]Step 2
for segment BC
P1=B(0,2)
P2=C(-4,0)
[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{0-2}{-4-0}=\frac{-2}{-4}=\frac{1}{2} \end{gathered}[/tex]Step 3
compare the slopes
[tex]\text{slope}_{AB}\ne slope_{BC}[/tex]then, the points are not collinear