Enter the equations of the asymptotes for the function f(x). f(x)=3x−7+2Vertical asymptote: Horizontal asymptote

Given
[tex]f(x)=\frac{3}{x-7}+2[/tex]To find the vertical asymptote and the horizontal asymptote.
Now,
The given function is,
[tex]f(x)=\frac{3}{x-7}+2[/tex]Taking LCM on the RHS implies,
[tex]\begin{gathered} f(x)=\frac{3+2(x-7)}{x-7} \\ f(x)=\frac{2x-14+3}{x-7} \\ f(x)=\frac{2x-11}{x-7} \end{gathered}[/tex]The denominator of the function f(x) is the vertical asymptote.
That is,
[tex]\begin{gathered} x-7=0 \\ x=7 \end{gathered}[/tex]Hence, x=7 is the vertical asymptote.
Since the degree of the numerator is equal to the degree of the denominator then, the horizontal asymptote is the ratio of the coeffcient of x in the numerator to the ratio of the coefficient of x in the denominator.
That implies,
[tex]\begin{gathered} \text{Horizontal asymptote, y}=\frac{2}{1} \\ \text{Horizontal asymptote},\text{ y=2} \end{gathered}[/tex]Hence, the horizontal asymptote is y=2.