|x-3+4=10Ox= -15 and x = 21XOx= -5 and x = -1Ox= 1 and x = 5Ox= 15 and x = 21

SOLUTIONS
Solve for the value of x
[tex]\frac{1}{3}|x-3|+4=10[/tex]Step 1: Subtract the 4 on both side
[tex]\begin{gathered} \frac{1}{3}|x-3|+4=10 \\ \frac{1}{3}|x-3|+4-4=10-4 \\ \frac{1}{3}|x-3|=6 \end{gathered}[/tex]Step 2: Multiply both side by 3
[tex]\begin{gathered} 3.\frac{1}{3}|x-3|=6.3 \\ |x-3|=18 \end{gathered}[/tex]Step 3: Use absolute rule or method and evaluate the x
[tex]\begin{gathered} |u|=a \\ u=-a,oru=a \end{gathered}[/tex][tex]\begin{gathered} |x-3|=18 \\ x-3=-18,x-3=18 \\ x=-18+3,x=18+3 \\ x=-15,x=21 \end{gathered}[/tex]
Therefore the correct answer is
[tex]x=-15,x=21[/tex]Option A