Respuesta :

Given that:

[tex]\angle B=84.7^o,\angle C=5.7^o,AC=563\text{ f}eet[/tex]

Use the fact that the sum of the interior angles of a triangle is 180 degrees. So,

[tex]\angle A+\angle B+\angle C=180^o^{}[/tex]

By using the sine rule,

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

where a is the side opposite to angle A, b is the side opposite to angle B and c is the side opposite to angle C.

Plug the given values.

[tex]\frac{\sin A^{}}{a}=\frac{\sin84.7^o}{563}=\frac{\sin5.7^o}{c}[/tex]

Consider

[tex]\frac{\sin84.7^o}{563}=\frac{\sin5.7^o}{c}[/tex]

Solve for c.

[tex]\begin{gathered} c=\frac{563\sin5.7^o}{\sin84.7^o} \\ =56.157\text{ f}eet \end{gathered}[/tex]

RELAXING NOICE
Relax