The given expression can be rationalized as,
[tex]\begin{gathered} =\frac{3}{3-\sqrt[]{6x}}\times\frac{3+\sqrt[]{6x}}{3+\sqrt[]{6x}} \\ =\frac{3(3+\sqrt[]{6x})}{3^2-(\sqrt[]{6x)^2}} \\ =\frac{3(3+\sqrt[]{6x})}{9-6x^{}} \\ =\frac{3(3+\sqrt[]{6x})}{3(3-2x)^{}} \\ =\frac{(3+\sqrt[]{6x})}{(3-2x)^{}} \end{gathered}[/tex]Hence, optoion B is correct.