Given:
[tex]f(x)=\sqrt{x}[/tex]Required:
To find the derivative of the given function by using the first principle.
Explanation:
To find the derivative by the first principle we will use the limit method.
[tex]\begin{gathered} f^{\prime}(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h} \\ f^{\prime}(x)=\operatorname{\lim}_{h\to0}\frac{\sqrt{x+h}-\sqrt{x}}{h} \end{gathered}[/tex]Rationalise the denominator
[tex]f^{\prime}(x)=\operatorname{\lim}_{h\to0}\frac{\sqrt{x+h}-\sqrt{x}}{h}\times\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}[/tex]Use the formula:
[tex](a+b)(a-b)=a^2-b^2[/tex][tex]\begin{gathered} f^{\prime}(x)=\lim_{h\to0}\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\ f^{\prime}(x)=\lim_{h\to0}\frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\ f^{\prime}(x)=\lim_{h\to0}\frac{1}{(\sqrt{x+h}+\sqrt{x)}} \end{gathered}[/tex]Now apply the given limit
[tex]\begin{gathered} f^{\prime}(x)=\frac{1}{(\sqrt{x+0}-\sqrt{x})} \\ f^{\prime}(x)=\frac{1}{2\sqrt{x}} \end{gathered}[/tex]Final answer:
Thus the derivative of the given function is
[tex]f^{\prime}(x)=\frac{1}{2\sqrt{x}}[/tex]