the points R (-3,9),S(-9,3),T(-6,0) and U (0,6) form a quadrilateral. find the desired slopes and lengths, then fill in the words that best identifies the type of quadrilateral

• slope of RS = 1
,• slope of ST = -1
,• slope of TU = 1
• slope UR = -1
STEP - BY - STEP EXPLANATION
What to find?
• Slope of RS
,• Slope of ST
,• Slope of TU
,• Slope of UR
The formula used in finding the slope between two points is given by;
[tex]\text{slope(m)}=\frac{y_2-y_1}{x_2-x_1}[/tex]To find slope RS;
R (-3,9),S(-9,3)
x₁ = -3 y₁=9 x₂=-9 y₂=3
Substitute the values into the formula and simplify.
[tex]\text{Slope RS=}\frac{3-9}{-9+3}=\frac{-6}{-6}=1[/tex]Hence, slope RS = 1
Slope ST
S(-9,3),T(-6,0)
x₁ = -9 y₁=3 x₂=-6 y₂=0
Substitute the values into the formula and simplify.
[tex]\text{Slope ST=}\frac{0-3}{-6+9}=\frac{-3}{3}=-1[/tex]Hence, slope ST = -1
Slope TU
T(-6,0) , U (0,6)
x₁ = -6 y₁=0 x₂=0 y₂=6
Substitute the values into the formula and simplify.
[tex]\text{Slope TU=}\frac{6-0}{0+6}=\frac{6}{6}=1[/tex]Hence, slope TU = 1
Slope UR
U (0,6), R (-3,9)
x₁ = 0 y₁=6 x₂=-3 y₂=9
Substitute the values into the formula and simplify.
[tex]\text{Slope UR=}\frac{9-6}{-3-0}=\frac{3}{-3}=-1[/tex]Hence, slope UR = -1