First, let's calculate the mean of this sample.
The mean is given by the sum of all values divided by the number of values:
[tex]\begin{gathered} \bar{x}=\frac{13+10+9+7+6}{5}\\ \\ \bar{x}=\frac{45}{5}\\ \\ \bar{x}=9 \end{gathered}[/tex]Now, we can use the formula below for the sample standard deviation:
[tex]\begin{gathered} s=\sqrt{\frac{\sum_{i=1}^N(x_i-\bar{x})^2}{N-1}}\\ \\ s=\sqrt{\frac{(13-9)^2+(10-9)^2+(9-9)^2+(7-9)^2+(6-9)^2}{5-1}}\\ \\ s=\sqrt{\frac{16+1+0+4+9}{4}}\\ \\ s=\sqrt{\frac{30}{4}}\\ \\ s=\sqrt{7.5}\\ \\ s=2.74 \end{gathered}[/tex]Therefore the sample standard deviation is 2.74, which represents a salary of $2740.