We can express the number 0.1 as the quotient 1/10, then we get:
[tex](0.1)^3=(\frac{1}{10})^3[/tex]With quotients, we can distribute the power, and raise both the numerator and the denominator, like this:
[tex](\frac{1}{10})^3=\frac{1^3}{10^3}[/tex]no matter what is the value of the power, every time you raise 1 to something, you get 1, then we get:
[tex]\frac{1^3}{10^3}=\frac{1}{10^3}[/tex]In this case, we have 10^3 in the denominator, this is the same as multiplying 10 3 times, like this:
[tex]\frac{1}{10^3}=\frac{1}{10\times10\times10}=\frac{1}{100\times10}=\frac{1}{1000}[/tex]Then:
[tex](0.1)^3=\frac{1}{1000}[/tex]Similarly, with (1/10)^4:
[tex](\frac{1}{10})^4=\frac{1^4}{10^4}=\frac{1}{10^4}=\frac{1}{10\times10\times10\times10}=\frac{1}{10000}[/tex]