We are asked to determine the maximum wavelength of a photon that can eject photoelectrons from a metal given its work function. To do that we will use the following formula:
[tex]\lambda=\frac{hc}{E}[/tex]Where:
[tex]\begin{gathered} \lambda=\text{ wavelength} \\ h=\text{ plank's constant} \\ c=\text{ speed of light} \\ E=\text{ work function} \end{gathered}[/tex]First, we will convert the work function from eV to Joules. To do that we will use the following conversion factor:
[tex]1eV=1.6\times10^{-19}J[/tex]Multiplying by the conversion factor we get:
[tex]3.45eV\times\frac{1.6\times10^{-19}J}{1eV}=5.53\times10^{-19}J[/tex]Plank's constant is equivalent to:
[tex]h=6.63\times10^{-34}Js[/tex]The speed of light is equivalent to:
[tex]c=3\times10^8\frac{m}{s}[/tex]Now, we plug in the values in the formula:
[tex]\lambda=\frac{(6.63\times10^{-34}Js)(3\times10^8\frac{m}{s})}{5.53\times10^{-19}J}[/tex]Solving the operations:
[tex]\lambda=3.6\times10^{-7}m[/tex]And thus we have determined the wavelength.