Let's find the first derivative of the function:
[tex]\begin{gathered} P(x)^{\prime}=2(-45)x+2430^{} \\ P(x)^{\prime}=-90x+2430 \end{gathered}[/tex]Let's find the critical point, in order to find its maximum:
[tex]\begin{gathered} P(x)^{\prime}=0 \\ -90x+2430=0 \\ \text{solve for x:} \\ 90x=2430 \\ x=\frac{2430}{90} \\ x=27 \end{gathered}[/tex]xo is a global maximum for the function if:
[tex]f\colon X\to R,if_{\text{ }}(x\in R)f(x_o)\ge x[/tex]So:
[tex]\begin{gathered} x<27 \\ x=26 \\ P(26)=17760 \\ x>27 \\ x=28 \\ P(28)=17760 \\ x=27 \\ P(27)=17805 \\ so\colon \\ P(27)>P(28)>P(26) \end{gathered}[/tex]Therefore, x is the global maximum of the function, therefore, the automobile manufacturer needs to produce 27 cars per shift in order to maximize its profit