Part (a)
According to Snell's law,
[tex]n_a\sin \theta=n\sin r[/tex]Substitute known values,
[tex]\begin{gathered} (1)\sin 28.0^{\circ}=(1.50)\sin r \\ \sin r=\frac{0.469}{1.50} \\ r=\sin ^{-1}(0.313) \\ =18.2^{\circ} \end{gathered}[/tex]The lateral shift can be given as,
[tex]d=\frac{L}{\cos r}\sin (\theta-r)[/tex]Substituting values,
[tex]\begin{gathered} d=\frac{2.20\text{ cm}}{\cos18.2}\sin (28.0-18.2) \\ =\frac{2.20\text{ cm}}{0.95}(0.170) \\ =0.394\text{ cm} \end{gathered}[/tex]Thus, the value of d is 0.394 cm.
Part (b)
The time taken to pass through the glass is,
[tex]t=\frac{L}{c}[/tex]Substituting values,
[tex]\begin{gathered} t=\frac{(2.20\text{ cm)(}\frac{1\text{ m}}{100\text{ cm}})}{3\times10^8\text{ m/s}} \\ =(0.733\times10^{-10}s)(\frac{1\text{ ps}}{10^{-12}\text{ s}}) \\ =73.3\text{ ps} \end{gathered}[/tex]Thus, the time taken by light to travel is 73.3 ps.