Compare P(Grade 12 | opposed with P(opposed | Grade 12). (1 point)

Given that the table that shows the results of the survey, you can identify that the total number of students surveyed is:
[tex]Total=5+3+9+8+12+9+15+16+10+12+6+11=116[/tex]Let be:
- Event A: Grade 12.
- Event B: Opposed.
You need to use the Conditional Probabilty Formula:
[tex]P(A|B)=\frac{P(A\cap B)}{P(B)}[/tex]• You need to find:
[tex]P(A\cap B)[/tex]You can identify in the table that the number of students that belong to Grade 12 and Opposed is:
[tex]6[/tex]Therefore:
[tex]P(A\cap B)=\frac{6}{116}=\frac{3}{58}[/tex]The number of students that belong to Opposed is:
[tex]Opposed=3+12+16+6=37[/tex]Therefore:
[tex]P(B)=\frac{37}{116}[/tex]Now you can determine that:
[tex]P(A|B)=\frac{\frac{3}{58}}{\frac{37}{116}}=\frac{6}{37}[/tex]• You need to find:
[tex]P(B|A)[/tex]Use:
[tex]P(B|A)=\frac{P(A\cap B)}{P(A)}[/tex]You can determine that:
[tex]P(A)=\frac{12+6+11}{116}=\frac{29}{116}=\frac{1}{4}[/tex]Finally:
[tex]P(B|A)=\frac{\frac{3}{58}}{\frac{1}{4}}=\frac{6}{29}[/tex]Notice that:
[tex]P(A|B)Hence, the answer is: Third option.