- Calculate the sample mean x:
[tex]\bar{x}=\frac{60+75+69+72+61+74+64}{7}=\frac{475}{7}=67.86[/tex]The population standard deviation is 5 inches.
Confidence level is 95% = 0.95
Therefore, the significance level is 1 - 0.95 = 0.05
- So, using standard normal table, the one sided critical value for 95% confidence level is 1.96. Then the margin of error is given by:
[tex]\begin{gathered} E=1.96\times\frac{\sigma}{\sqrt{n}} \\ Where\text{ }\sigma=5\text{ and n}=7 \end{gathered}[/tex]Substitute the values:
[tex]E=1.96\times\frac{5}{\sqrt{7}}=3.7041[/tex]- The formula for confidence interval is given as:
[tex]\begin{gathered} \bar{x}\pm1.96\times\frac{\sigma}{\sqrt{n}} \\ or \\ \bar{x}\pm E \end{gathered}[/tex]Therefore, the intervals are:
smaller value
[tex]67.86-3.7041=64.16[/tex]larger value
[tex]67.86+3.7041=71.56[/tex]Answer:
[tex]\bar{x}=67.86[/tex]Margin of error at 95% confidence level = 3.70
95% confidence interval = [ 64.16, 71.56 ]