The solution:
Given:
[tex]\begin{gathered} -y=5x+21...eqn(1) \\ -4x+y=6...eqn(2) \end{gathered}[/tex]Required:
To solve by the Substitution Method.
From eqn(1), we get:
[tex]y=-5x-21...eqn(3)[/tex]Putting eqn(3) into eqn(2), we get:
[tex]-4x+(-5x-21)=6[/tex]Clear the bracket:
[tex]\begin{gathered} -4x-5x-21=6 \\ \\ \text{ Collect the like terms:} \\ -9x=6+21 \\ \\ -9x=27 \end{gathered}[/tex]Divide both sides by -9.
[tex]x=\frac{27}{-9}=-3[/tex]Substitute -3 for x in eqn(3), we get:
[tex]y=-5(-3)-21=15-21=-6[/tex]Thus, the correct answer is (-3,-6)