Given:
• Mass of Particle A = 5.30 g
,• Mass of particle B = 2.40 g
• Particle A is located at the origin.
,• Particle B is located at (x, y) ==> (25.0 cm, 1.90 cm)
Let's solve for the following:
• A. What is the x-component of CM?
To find the x-component, apply the formula:
[tex]x_{\operatorname{cm}}=\frac{m_1x_1+m_2x_2}{m_1+m_2}[/tex]Where:
m1 = 5.30 g
m2 = 2.40 g
x1 = 0
x2 = 25.0 cm
Thus, we have:
[tex]\begin{gathered} x_{\operatorname{cm}}=\frac{(5.30\times0)+(2.40\times25.0)}{5.30+2.40} \\ \\ x_{\operatorname{cm}}=\frac{0+60}{7.70} \\ \\ x_{\operatorname{cm}}=7.8\operatorname{cm} \end{gathered}[/tex]The x-component is 7.8 cm.
• (B). What is the y-component of the CM?
To find the y-component, apply the formula:
[tex]y_{\operatorname{cm}}=\frac{m_1y_1+m_2y_2}{m_1+m_2}[/tex]Where:
y1 = 0
y2 = 1.90 cm
Thus, we have:
[tex]\begin{gathered} y_{\operatorname{cm}}=\frac{(5.30\times0)+(2.40\times1.90)}{5.30+2.40} \\ \\ y_{\operatorname{cm}}=\frac{0+4.56}{7.70} \\ \\ y_{\operatorname{cm}}=0.60\text{ cm} \end{gathered}[/tex]The y-component is 0.60 cm
ANSWER:
• (A). 7.80 cm
,• (B). 0.60 cm