Respuesta :

Given the polynomial;

[tex]f(x)=x^3+2x^2-4x-8[/tex]

We shall begin by factorizing in groups.

We take

[tex]\begin{gathered} x^3+2x^2 \\ \text{Factor out x}^2 \\ x^2(x+2) \end{gathered}[/tex]

We now take the other part which is;

[tex]\begin{gathered} -4x-8 \\ \text{Factor out -4} \\ -4(x+2) \end{gathered}[/tex]

We now have;

[tex]x^2(x+2)-4(x+2)[/tex]

We can regroup the factors and we have;

[tex](x^2-4)(x+2)[/tex]

Next step, we factorize;

[tex](x^2-4)[/tex]

We can apply the difference of squares formula, which is;

[tex](x^2-y^2)=(x+y)(x-y)[/tex]

We now have;

[tex]\begin{gathered} (x^2-4)=(x^2-2^2) \\ (x^2-2^2)=(x+2)(x-2) \end{gathered}[/tex]

Therefore, the polynomial after being completely factorized becomes;

[tex]f(x)=(x+2)(x-2)(x+2)[/tex]

The zero product property states that;

[tex]\begin{gathered} \text{If} \\ a\times b=0 \\ \text{Then;} \\ a=0,b=0 \end{gathered}[/tex]

Therefore, the polynomial woul now become;

[tex](x+2)(x-2)(x+2)=0[/tex]

We can now solve;

[tex]\begin{gathered} x+2=0,x=-2 \\ x-2=0,x=2 \end{gathered}[/tex]

[tex]\begin{gathered} f(x)=(x+2)(x-2)(x+2) \\ x=-2,x=2 \end{gathered}[/tex]

Also, when we have the factors as;

[tex](x+2)(x-2)(x+2)[/tex]

This can be re-arranged to become;

[tex]\begin{gathered} (x-2)(x+2)(x+2) \\ (x-2)(x+2)^2 \\ \text{Note that }(x+2)\text{ occurs twice} \end{gathered}[/tex]

ANSWER:

[tex]f(x)=(x-2)(x+2)^2[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico