Given the polynomial;
[tex]f(x)=x^3+2x^2-4x-8[/tex]We shall begin by factorizing in groups.
We take
[tex]\begin{gathered} x^3+2x^2 \\ \text{Factor out x}^2 \\ x^2(x+2) \end{gathered}[/tex]We now take the other part which is;
[tex]\begin{gathered} -4x-8 \\ \text{Factor out -4} \\ -4(x+2) \end{gathered}[/tex]We now have;
[tex]x^2(x+2)-4(x+2)[/tex]We can regroup the factors and we have;
[tex](x^2-4)(x+2)[/tex]Next step, we factorize;
[tex](x^2-4)[/tex]We can apply the difference of squares formula, which is;
[tex](x^2-y^2)=(x+y)(x-y)[/tex]We now have;
[tex]\begin{gathered} (x^2-4)=(x^2-2^2) \\ (x^2-2^2)=(x+2)(x-2) \end{gathered}[/tex]Therefore, the polynomial after being completely factorized becomes;
[tex]f(x)=(x+2)(x-2)(x+2)[/tex]The zero product property states that;
[tex]\begin{gathered} \text{If} \\ a\times b=0 \\ \text{Then;} \\ a=0,b=0 \end{gathered}[/tex]Therefore, the polynomial woul now become;
[tex](x+2)(x-2)(x+2)=0[/tex]We can now solve;
[tex]\begin{gathered} x+2=0,x=-2 \\ x-2=0,x=2 \end{gathered}[/tex][tex]\begin{gathered} f(x)=(x+2)(x-2)(x+2) \\ x=-2,x=2 \end{gathered}[/tex]
Also, when we have the factors as;
[tex](x+2)(x-2)(x+2)[/tex]This can be re-arranged to become;
[tex]\begin{gathered} (x-2)(x+2)(x+2) \\ (x-2)(x+2)^2 \\ \text{Note that }(x+2)\text{ occurs twice} \end{gathered}[/tex]ANSWER:
[tex]f(x)=(x-2)(x+2)^2[/tex]