Respuesta :

We will have to use the Law of Sines, which states that:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Procedure:

0. We have to remember that the sum of the interior angles of a right triangle adds up to 180°. Then:

[tex]A+B+C=180[/tex]

As we are given two angles, B and C, we can isolate for A:

[tex]A=180-B-C[/tex]

Replacing the values we get:

[tex]A=180-42-100[/tex][tex]A=38[/tex]

2. Now that we have the three angles, we can use the Law of Sines to get the sides:

[tex]\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Isolating for c:

[tex]c=\frac{\sin C}{\frac{\sin B}{b}}[/tex]

Replacing the values:

[tex]c=\frac{\sin 100}{\frac{\sin 42}{165}}[/tex][tex]c\approx243[/tex]

3. Finally, getting a also using the Law of Sines:

[tex]a=\frac{\sin A}{\frac{\sin B}{b}}[/tex]

Replacing the values:

[tex]a=\frac{\sin 38}{\frac{\sin 42}{165}}[/tex][tex]a\approx152[/tex]

Answer: A.

• A = 38°

,

• a = 152m

,

• c = 243m

RELAXING NOICE
Relax