Round to the nearest integer as needed and look at photo for accurate description

We will have to use the Law of Sines, which states that:
[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]Procedure:
0. We have to remember that the sum of the interior angles of a right triangle adds up to 180°. Then:
[tex]A+B+C=180[/tex]As we are given two angles, B and C, we can isolate for A:
[tex]A=180-B-C[/tex]Replacing the values we get:
[tex]A=180-42-100[/tex][tex]A=38[/tex]2. Now that we have the three angles, we can use the Law of Sines to get the sides:
[tex]\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]Isolating for c:
[tex]c=\frac{\sin C}{\frac{\sin B}{b}}[/tex]Replacing the values:
[tex]c=\frac{\sin 100}{\frac{\sin 42}{165}}[/tex][tex]c\approx243[/tex]3. Finally, getting a also using the Law of Sines:
[tex]a=\frac{\sin A}{\frac{\sin B}{b}}[/tex]Replacing the values:
[tex]a=\frac{\sin 38}{\frac{\sin 42}{165}}[/tex][tex]a\approx152[/tex]Answer: A.
• A = 38°
,• a = 152m
,• c = 243m