The given equation is:
[tex]z^3\text{ - 8 = 0}[/tex]This can be rewritten as:
[tex]z^3-2^3\text{ = 0}[/tex]Note that:
[tex]a^3-b^3=(a-b)(a^2\text{ + }ab+b^2)[/tex]Therefore:
[tex]z^3-2^{3\text{ }}=(z-2)(z^2\text{ + 2z + 4)}[/tex][tex]\begin{gathered} z\text{ - 2 = 0} \\ z_1\text{ = 2} \\ z^2\text{ + 2z + 4 = 0} \\ \text{The almighty formula can be used to solve the quadratic equation } \\ z\text{ = }\frac{\text{-b }\pm\sqrt[]{b^2-4ac}}{2a} \\ a\text{ = 1, b = 2, c = 4} \\ z\text{ = }\frac{\text{-2 }\pm\sqrt[]{2^2-4(1)(4)}}{2(1)} \\ z\text{ = }\frac{\text{-2 }\pm\sqrt[]{-12}}{2} \\ z\text{ = }\frac{\text{-2 }\pm i\sqrt[]{12}}{2} \\ z\text{ = }\frac{-2}{2}\pm\frac{i2\sqrt[]{3}}{2} \\ z\text{ = -1 }\pm i\sqrt[]{3} \\ z_2=\text{ -1+i}\sqrt[]{3} \\ z_3=\text{ -1 - i}\sqrt[]{3} \end{gathered}[/tex]