Respuesta :

SOLUTION

We want to find the cube root of

[tex]4-4i\sqrt{3}[/tex]

This can be written as

[tex]\sqrt[3]{(4-i.4.\sqrt{3})}[/tex]

Step 2

Step 3

Step 4

Step 5

So, 3 degree root from input complex number has exactly 3 values:

These become

[tex]\begin{gathered} \alpha_0=2.(cos(-\frac{\pi}{9})+i.sin(-\frac{\pi}{9})) \\ \alpha_1=2.(cos(-\frac{5.\pi}{9})+i.sin(\frac{5.\pi}{9})) \\ \alpha_2=2.(cos(-\frac{11.\pi}{9})+i.sin(\frac{11.\pi}{9})) \end{gathered}[/tex]

Hence the answer is

[tex]\begin{gathered} \alpha_0=2.(cos(-\frac{\pi}{9})+i.sin(-\frac{\pi}{9})) \\ \alpha_1=2.(cos(-\frac{5.\pi}{9})+i.sin(\frac{5.\pi}{9})) \\ \alpha_2=2.(cos(-\frac{11.\pi}{9})+i.sin(\frac{11.\pi}{9})) \end{gathered}[/tex]
Ver imagen AsaiahK669303
Ver imagen AsaiahK669303
Ver imagen AsaiahK669303
Ver imagen AsaiahK669303
ACCESS MORE
EDU ACCESS
Universidad de Mexico