Respuesta :

Solution:

To find the area, A, ofa circular pond, we apply the formula to find thae area of a circle, which is

[tex]\begin{gathered} A=\pi r^2 \\ r\text{ is the radius} \end{gathered}[/tex]

Given that the radius, r of the circua r pond is 8 ft

The area, A, of the circular pond will be

[tex]\begin{gathered} A=\pi r^2 \\ A=\pi(8)^2=64\pi\text{ ft}^2 \\ A=64\pi\text{ ft}^2 \\ Where\text{ }\pi\text{ is taken as 3.14} \\ A=3.14\times64=200.96\text{ ft}^2 \\ A=200.96\text{ ft}^2 \end{gathered}[/tex]

Where,

[tex]\begin{gathered} 1\text{ m}=3.2808ft \\ 1\text{ m}^2=(3.2808)^2=10.76364864\text{ ft}^2 \end{gathered}[/tex]

The area, A, of the circular pond in square meters will be

[tex]\begin{gathered} 1\text{ m}^2=10.76364864\text{ft}^2 \\ 200.96\text{ ft}^2=\frac{200.96}{(3.2808)^2}=18.67024\text{ m}^2 \\ A=18.67\text{ m}^2\text{ \lparen nearest hundredth\rparen} \end{gathered}[/tex]

Hence, the answer is 18.67 m² (nearest hundredth)

ACCESS MORE
EDU ACCESS
Universidad de Mexico