The given function is
[tex]f(n+1)=f(n)-2[/tex]We know that
[tex]f(1)=10[/tex]So, let's form the sequence using the function.
For n = 1.
[tex]\begin{gathered} f(1+1)=f(1)-2 \\ f(2)=1-2 \\ f(2)=-1 \end{gathered}[/tex]For n = 2.
[tex]\begin{gathered} f(2+1)=f(2)-2 \\ f(3)=-1-2 \\ f(3)=-3 \end{gathered}[/tex]For n = 3.
[tex]\begin{gathered} f(3+1)=f(3)-2 \\ f(4)=-3-2 \\ f(4)=-5 \end{gathered}[/tex]For n = 4.
[tex]\begin{gathered} f(4+1)=f(4)-2 \\ f(5)=-5-2 \\ f(5)=-7 \end{gathered}[/tex]Until now, the sequence is
[tex]-1,-3,-5,-7,\ldots[/tex]As you can observe, the function generates an arithmetic sequence with a difference of -2.