The diagram shows a path from Doint P to ponts consisting of three in somep(20.77oR1-4.-9)Q120,-9)S(-4,-24)What is the total length of the path from P to S?47 unitsb.55 units65 unitsd.73 units

b. 55 units
Explanation
due to the displacements are vertical or horizontal we can add the length of each segmento to find the total,so
so
a)let
[tex]\begin{gathered} P(20,7) \\ Q(20,-9) \end{gathered}[/tex][tex]Distance\text{ from P to Q}\Rightarrow red[/tex]as this is a vertical line, we nned to subtract the y-coomponet of the points
[tex]\begin{gathered} Distance\text{ from P to Q=}\Delta y=7-(-9)=7+9=16 \\ so \\ PQ=16 \end{gathered}[/tex]so , PQ= 16
Step 2
b) Distance from Q to R (green)
QR
Let
[tex]\begin{gathered} Q(20,-9) \\ R(-4,-9) \end{gathered}[/tex]as this is a horizontal line, we need to subtract the x-coomponet of the points ,so
[tex]\begin{gathered} Distance\text{ fromQ to R=}\Delta x=20-(-4)=20+4 \\ so \\ QR=24 \end{gathered}[/tex]so
QR=24
Step 3
finally, segment RS (blue)
let
[tex]\begin{gathered} R(-4,-9) \\ S(-4,-24) \end{gathered}[/tex]as this is a vertical line, we nned to subtract the y-coomponet of the points
[tex]\begin{gathered} Distance\text{ fromR to S=}\Delta y=-9-(-24)=-9+24=15 \\ so \\ RS=15 \end{gathered}[/tex]Step 4
finally , add the segments to find the total distance from P to S
[tex]\begin{gathered} PS=PQ+QR+RS \\ replace \\ PS=16+24+15 \\ PS=55\text{ units} \end{gathered}[/tex]therefore, the answer i
b. 55 units
I hope this helps you