Exit ticket on angels,Arc and segments formed by intersecting chord,Secant,and tangents

The given information is:
- Arc FH measures 97°.
The measure of angle FGH is given by the formula:
[tex]m\angle FGH=\frac{1}{2}(\hat{FIH}-\hat{FH})[/tex]Now, the measure of the circumference is 360, so arc FIH measures:
[tex]\begin{gathered} 360=FIH+FH \\ 360=FIH+97 \\ FIH=360-97 \\ FIH=263 \end{gathered}[/tex]By replacing these values, we obtain:
[tex]\begin{gathered} m\angle FGH=\frac{1}{2}(263-97) \\ m\angle FGH=\frac{1}{2}(166) \\ m\angle FGH=83\degree \end{gathered}[/tex]The answer is angle FGH measures 83°.