Respuesta :
1) According to the rational root theorem, the roots of the function are given by p/q, where p is a factor of a_0 and q is a factor of a_n. In our case,
[tex]a_0=24,a_n=a_3=1[/tex]Thus, the possible roots are
[tex]\text{possible roots}=\mleft\lbrace\pm1,\pm2,\pm3,\pm4,\pm6,\pm8,\pm12\pm24\mright\rbrace[/tex]We need to test each option,
[tex]\begin{gathered} x=1 \\ \Rightarrow x^3-5x^2-2x+24=1-5-2+24=18\ne0 \\ x=2 \\ \Rightarrow x^3-5x^2-2x+24=8-20-4+24=8\ne0 \\ x=3 \\ \Rightarrow x^3-5x^2-2x+24=27-45-6+24=0 \end{gathered}[/tex]Thus, a root of the equation is x=3; then,
[tex]\Rightarrow x^3-5x^2-2x+24=(x-3)(x^2-2x-8)[/tex]Finally, we can easily factorize the quadratic term,
[tex]\Rightarrow x^3-5x^2-2x+24=(x-3)(x-4)(x+2)[/tex]
The answer to question 1) is (x-3)(x-4)(x+2).
2) Given the initial equation,
[tex]\begin{gathered} 4x^4-4x^3-51x^2=40-106x \\ \Rightarrow4x^4-4x^3-51x^2+106x-40=0 \end{gathered}[/tex]Using the same theorem as in part 1)
The possible roots are
[tex]\text{possible roots}=\mleft\lbrace\pm1,\pm2,\pm4\pm5,\pm8,\pm10,\pm20,\pm40,\ldots\mright\rbrace[/tex]Testing the options,
[tex]\begin{gathered} x=1 \\ \Rightarrow4x^4-4x^3-51x^2+106x-40=4-4-51+106-40=15\ne0 \\ x=2 \\ \Rightarrow4x^4-4x^3-51x^2+106x-40=64-32-204+212-40=0 \end{gathered}[/tex]Then, a root of the equation is x=2; thus,
[tex]4x^4-4x^3-51x^2+106x-40=(x-2)(4x^3+4x^2-43x+20)[/tex]Using the Rational Root theorem on the cubic term,
[tex]\text{possible roots=}\mleft\lbrace\pm1,\pm2,\pm4,\pm10,\pm20,\ldots\mright\rbrace[/tex]Testing each option,
[tex]\begin{gathered} x=1 \\ \Rightarrow4x^3+4x^2-43x+20=4+4-43+20\ne0 \\ \ldots \\ x=-4 \\ \Rightarrow4x^3+4x^2-43x+20=0 \end{gathered}[/tex]Thus,
[tex]\begin{gathered} \Rightarrow4x^4-4x^3-51x^2+106x-40=(x-2)(x+4)(4x^2-12x+5) \\ \Rightarrow4x^4-4x^3-51x^2+106x-40=(x-2)(x+4)(x-\frac{1}{2})(x-\frac{5}{2}) \end{gathered}[/tex]Where
[tex]\begin{gathered} 4x^2-12x+5=0 \\ \Rightarrow x=\frac{-(-12)\pm\sqrt[]{(-12)^2-4\cdot4\cdot5}}{2\cdot4}=\frac{12\pm\sqrt[]{64}}{8}=\frac{12\pm8}{8} \\ \Rightarrow x=\frac{20}{8},x=\frac{4}{8} \\ \Rightarrow x=\frac{5}{2},x=\frac{1}{2} \end{gathered}[/tex]Therefore, the answer to part 2) is (x-2)(x+4)(x-1/2)(x-5/2)
c) Given the equation
[tex]9x^4-42x^3=32x-64x^2[/tex]Then,
[tex]\begin{gathered} \Rightarrow9x^4-42x^3+64x^2-32x=0 \\ \Rightarrow x(9x^3-42x^2+64x^{}-32)=0 \end{gathered}[/tex]Using the Rational root theorem on the cubic part,
[tex]\Rightarrow\text{possible roots}=\mleft\lbrace\pm1,\pm2,\pm3,\pm4,\pm8,\pm16,\pm32,\ldots\mright\rbrace[/tex]Testing each possibility until finding a root,
[tex]\begin{gathered} x=1 \\ \Rightarrow9x^3-42x^2+64x^{}-32=9-42+64-32=-1 \\ x=2 \\ \Rightarrow9x^3-42x^2+64x^{}-32=0 \end{gathered}[/tex]Thus,
[tex]\begin{gathered} \Rightarrow9x^4-42x^3+64x^2-32x=x(x-2)(9x^2-24x+16) \\ \Rightarrow9x^4-42x^3+64x^2-32x=x(x-2)(x-\frac{4}{3})^2 \end{gathered}[/tex]The answer to part c) is x(x-2)(x-4/3)^2
