Solution
We want to graph the parabola
[tex]y=-(x+2)^2-5[/tex]To find the vertex, We will equate
[tex]\begin{gathered} x+2=0 \\ x=-2 \\ \text{and} \\ y=-5 \end{gathered}[/tex]Coordinate of the vertex is (-2, -5)
To the left of the vertex, let us pick x = -3 and x = -5
when x = -3
[tex]\begin{gathered} y=-(x+2)^2-5 \\ y=-(-3+2)^2-5 \\ y=-(-1)^2-5 \\ y=-1-5=-6 \end{gathered}[/tex]Coordinate is (-3, -6)
When x = -5
[tex]\begin{gathered} y=-(x+2)^2-5 \\ y=-(-5+2)^2-5 \\ y=-(-3)^2-5 \\ y=-9-5=-14 \end{gathered}[/tex]Coordinate is (-5, -14)
To the right of the vertex
We can pick x = 0 and x = 1
W