[tex]log_2(16)=4\text{ \lparen2nd opt}\imaginaryI\text{on}\operatorname{\rparen}[/tex]
Explanation:[tex]a)\text{ 2}^4\text{ = 16}[/tex][tex]\begin{gathered} In\text{ logarithm property:} \\ a^b\text{ = c an be converted to logarithm by using the previous base } \\ \text{as log of the number at the other side of the equation:} \\ b\text{ = log}_ac \end{gathered}[/tex]
Applying same to our question:
[tex]\begin{gathered} 2^4\text{ = 16 becomes:} \\ 4\text{ = log}_2\text{ \lparen16\rparen} \\ \\ log_2(16)\text{ = 4 \lparen2nd option\rparen} \end{gathered}[/tex]