Respuesta :

Explanation

Let's picture the situation of the exercise:

We're looking for the width of the above rectangle. Recall that the area of a rectangle is given by the following equation:

[tex]A=L\cdot W\leftarrow\begin{cases}A=area, \\ L=\text{length,} \\ W=\text{width.}\end{cases}[/tex]

For our rectangle, this equation looks like

[tex]10x^3+37x^2+38x+20=(2x+5)\cdot W\text{.}[/tex]

Solving this equation for W, we get

[tex]W=\frac{10x^3+37x^2+38x+20}{2x+5}\text{.}[/tex]

Then, the exercise turns out to be a polynomial division. let's do it:

Then,

[tex]\frac{10x^3+37x^2+38x+20}{2x+5}=\text{ Quotient}+\text{ Residue}=(5x^2+6x+4)+0=5x^2+6x+4.[/tex]

And Thus,

[tex]W=5x^2+6x+4.[/tex]Answer

The width of the given rectangle is

[tex]5x^2+6x+4.[/tex]

Ver imagen QuashawnE58726
Ver imagen QuashawnE58726
RELAXING NOICE
Relax