Suppose the area of a rectangle is 1023 +37x2 + 38x + 20 and the length is 2x + 5. What is the width of the rectangle?Width:

Let's picture the situation of the exercise:
We're looking for the width of the above rectangle. Recall that the area of a rectangle is given by the following equation:
[tex]A=L\cdot W\leftarrow\begin{cases}A=area, \\ L=\text{length,} \\ W=\text{width.}\end{cases}[/tex]For our rectangle, this equation looks like
[tex]10x^3+37x^2+38x+20=(2x+5)\cdot W\text{.}[/tex]Solving this equation for W, we get
[tex]W=\frac{10x^3+37x^2+38x+20}{2x+5}\text{.}[/tex]Then, the exercise turns out to be a polynomial division. let's do it:
Then,
[tex]\frac{10x^3+37x^2+38x+20}{2x+5}=\text{ Quotient}+\text{ Residue}=(5x^2+6x+4)+0=5x^2+6x+4.[/tex]And Thus,
[tex]W=5x^2+6x+4.[/tex]AnswerThe width of the given rectangle is
[tex]5x^2+6x+4.[/tex]