Simplify the expressions. The answers for the problems in Column A will match the answers for the problems in Column B, but in a different order

Solution
- The question gives us two expressions to simplify. They are
[tex]\begin{gathered} \text{Column A} \\ (-x^2+9x)+(2x^2-x) \\ \\ \text{Column B} \\ (-1x^2+2x)-(5x^2-2x) \end{gathered}[/tex]- We simplify the expressions by simply adding or subtracting terms with the same degree of variable x.
Column A
[tex]\begin{gathered} (-x^2+9x)+(2x^2-x) \\ \text{Remove the brackets} \\ -x^2+9x+2x^2-x \\ \text{Collect like terms} \\ 2x^2-x^2+9x-x^{} \\ =x^2+8x \end{gathered}[/tex]Column B
[tex]\begin{gathered} (-1x^2+2x)-(5x^2-2x) \\ \text{Remove the brackets} \\ -x^2+2x-5x^2+2x \\ \text{Collect like terms} \\ -5x^2-x^2+2x+2x \\ -6x^2+4x \end{gathered}[/tex]Final Answer
The answers are:
[tex]\begin{gathered} \text{ Column A} \\ x^2+8x \\ \\ \text{Column B} \\ =-6x^2+4x \end{gathered}[/tex]