Solution:
Given:
[tex]A=4500(1.75)^t\ldots\ldots.\ldots\ldots\ldots.\ldots..\ldots..(1)[/tex]where $4500 is the initial balance.
The balance of an account after t-years represents the amount.
The formula for amount is given by;
[tex]\begin{gathered} A=P(1+r)^t \\ \\ \text{where;} \\ P\text{ is the initial balance} \\ P=4500 \end{gathered}[/tex]Hence,
[tex]A=4500(1+r)^t\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.\mathrm{\cdot}..(2)[/tex]Comparing equation (1) and equation (2);
[tex]\begin{gathered} 4500(1.75)^t=4500(1+r)^t \\ \\ \text{Hence,} \\ 1.75=1+r \\ 1.75-1=r \\ r=0.75 \\ \\ Since\text{ the rate is measured as a percentage,} \\ r=0.75\times100 \\ r=75\text{ \%} \end{gathered}[/tex]Therefore, the percent (rate) that the account increases annually is 75%