From the question, we have the following parameters
μ = 1.015, σ = 0.13, n = 50, x-bar = 0.995
We will apply the above in the z-test formula below
[tex]z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt[]{n}}}[/tex]
Therefore, we will then have;
[tex]\begin{gathered} z=\frac{0.995-1.015}{\frac{0.13}{\sqrt[]{50}}} \\ z=\frac{-0.02}{\frac{0.13}{\sqrt[]{50}}} \\ z=-0.02\times\frac{\sqrt[]{50}}{0.13} \\ z=-1.0879 \end{gathered}[/tex]
Hence, we will find the probability of the above z score to get our answer. Using a z calculator, we will then have;
[tex]P\mleft(x\le0.995\mright)=P\mleft(z<-1.0879\mright)=0.1383[/tex]
Answer: 0.1383