Respuesta :
Given the coordinates of the point P:
[tex]P=(-2,4)[/tex](i)
A reflection across the line y = -1 (that is, parallel to the x-axis at a distance of 1 unit on the negative side of the y-axis) is expressed by the transformation:
[tex](x,y)\rightarrow(x,-y-2)[/tex]Then, using the coordinates of P, we can find the coordinates of P':
[tex]\begin{gathered} (-2,4)\rightarrow(-2,-4-2) \\ \\ \Rightarrow P^{\prime}=(-2,-6) \end{gathered}[/tex]Plotting both points and the line y = -1:
(ii)
A reflection across the y-axis is given by the following transformation:
[tex](x,y)\rightarrow(-x,y)[/tex]Using the coordinates of P', we can find the coordinates of P'':
[tex]\begin{gathered} (-2,-6)\rightarrow(2,-6) \\ \\ \Rightarrow P^{\prime}^{\prime}=(2,-6) \end{gathered}[/tex](iii)
A reflection across the origin can be expressed by the transformation rule:
[tex](x,y)\rightarrow(-x,-y)[/tex]Then, using this rule, we can go from the coordinates of P'' to the coordinates of P''':
[tex]\begin{gathered} (2,-6)\rightarrow(-2,6) \\ \\ \Rightarrow P^{\prime}^{\prime}^{\prime}=(-2,6) \end{gathered}[/tex](iv)
We plot the figure generated by P', P'', and P''':
As we can see, it is a right triangle with a height of 12 units and a base of 4 units. The area of this triangle is:
[tex]\begin{gathered} A=\frac{12\cdot4}{2} \\ \\ \therefore A=24 \end{gathered}[/tex]

