To find the perimeter
Let ABCD be the vertices of (3,2) (-2,2) (-2,-2) and (3,-2) respectively
A(3,2) B (-2,2) C(-2,-2) and D (3,-2)
We will find the distance AB, BC, CD and DA
Using the distance formula;
[tex]|d|=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Find the distance AB
A(3,2) B (-2,2)
x₁ = 3 y₁=2 x₂=-2 y₂=2
substituting the value into the formula:
[tex]|AB|=\sqrt[]{(-2-3)^2+(2-2)^2}[/tex]Evaluate
[tex]|AB|=\sqrt[]{(-5)^2+0}[/tex][tex]=\sqrt[]{25}[/tex][tex]=5[/tex]
Find the distance BC
B (-2,2) C(-2,-2)
x₁ = -2 y₁=2 x₂=-2 y₂=-2
Substitute into the formula
[tex]|BC|=\sqrt[]{(-2+2)^2+(-2-2)^2}[/tex]Evaluate
[tex]=\sqrt[]{0+(-4)^2}[/tex][tex]=\sqrt[]{16}[/tex][tex]=4[/tex]Find the distance CD
C(-2,-2) D (3,-2)
x₁ = -2 y₁=-2 x₂=-3 y₂=-2
Substitute into the formula
[tex]|CD|=\sqrt[]{(-3+2)^2+(-2+2)^2}[/tex]Evaluate
[tex]|CD|=\sqrt[]{(-5)^2+0}[/tex][tex]=\sqrt[]{25}[/tex][tex]=5[/tex]Find the distance DA
D(3 -2) A(3, 2)
x₁ = 3 y₁=-2 x₂=3 y₂=2
Substitute into the formula
[tex]|DA|=\sqrt[]{(3-3)^2+(2+2)^2}[/tex]Evaluate
[tex]=\sqrt[]{0+4^2}[/tex][tex]=\sqrt[]{16}[/tex][tex]=4[/tex]To get the perimeter, we will add all the distance
That is:
Perimeter = AB + BC + CD + DA
=5 + 4 + 5 + 4
=18
Perimeter = 18