The equation is given as
[tex]y=-4.9x^2+x+100[/tex]where y is the height and x is the time.
Note that at the point when the ball hits the ground, the height is 0.
Therefore, we equate y to 0, such that
[tex]\begin{gathered} y=0 \\ \therefore \\ -4.9x^2+x+100=0 \end{gathered}[/tex]Solving the quadratic equation using the quadratic formula,
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where
a = -4.9
b = 1
c = 100
Substituting into the equation, we have
[tex]\begin{gathered} x=\frac{-1\pm\sqrt[]{1^2-(4\times\lbrack-4.9\rbrack\times100)}}{2\times1} \\ x=\frac{-1\pm\sqrt[]{1+1960}}{2} \\ x=\frac{-1\pm\sqrt[]{1961}}{2} \\ x=\frac{-1\pm44.28}{2} \end{gathered}[/tex]Therefore, the value can be
[tex]\begin{gathered} x=\frac{-1+44.28}{2} \\ x=21.64 \end{gathered}[/tex]or
[tex]\begin{gathered} x=\frac{-1-44.28}{2} \\ x=-22.64 \end{gathered}[/tex]Since the time can only be positive, the time it takes for the ball to hit the ground is 21.64 seconds.