Let's begin by listing out the information given to us:
Height (h) = 40 ft, diameter (d) = 20 ft, radius (r) = 20/2 = 10 ft
The volume of the tank is given by:
[tex]\begin{gathered} V=\pi r^2h \\ V=3.14(10^2\cdot40) \\ V=12,560ft^3 \end{gathered}[/tex]The volume of the tank is given by the product of pi, radius square & the height of the tank
Volume = 3.14 * 10² * 40 = 12,560 ft³
You pick up 4 pumps that can pump half the volume of the tank in 1 hour = 12560/2 ft³/h = 6280 ft³/h
Each pump supplies this amount of water:
[tex]\Rightarrow\frac{6280}{4}=1570ft^{3}/h[/tex]Each pump supplies 1,570 ft³/h of water. If it takes 1 hour to fill half the tank, then it will take 2 hours to fill the tank.
Convering 1570 ft³/h to gal/h, we have:
[tex]\begin{gathered} 1ft=7.48gal\Rightarrow1ft^3/h=7.48gal/h \\ 1ft^3/h=7.48gal/h \\ 1570ft^3/h=x \\ \text{Cross multiply, we have:} \\ x=7.48(1570)=11743.6 \\ x=11744gal/h \end{gathered}[/tex]Therefore, each pump supplies 11,744 gallons per hour