Answer:
[tex]R=156.99\operatorname{Re}vs[/tex]Explanation: The equations used are as follows:
[tex]\begin{gathered} x(t)=x_o+v_ot+\frac{1}{2}at^2\Rightarrow(1) \\ v(t)=v_o+at\Rightarrow(2) \end{gathered}[/tex]By using equation (2), the time needed for the car to come to rest is calculated as follows:
[tex]\begin{gathered} v(t)=(31.3ms^{-1})_{}+(-1.6ms^{-2})t=0 \\ t=\frac{31.3ms^{-1}}{1.6ms^{-2}}=19.56s \\ t=19.563s \end{gathered}[/tex]By using equation (1), The total distance traveled in that time would be as:
[tex]\begin{gathered} x(19.563s)=_{}(31.3ms^{-1})\cdot(19.563s)+\frac{1}{2}(-1.6ms^{-2})\cdot(19.563s)^2\Rightarrow(1) \\ x(19.563s)=612.31-306.17=306.14m \\ \therefore\Rightarrow \\ x(19.563s)=306.14m \end{gathered}[/tex]The revolutions taken by the tire before the car comes to rest would be:
[tex]\begin{gathered} C=2\pi\cdot(0.31m)=1.95m \\ R=\frac{x(19.563s)}{C}=\frac{306.14m}{1.95m}=156.99\operatorname{Re}v \\ R=156.99\operatorname{Re}vs \end{gathered}[/tex]