From the given position-time graph, let's find the average velocity in the following time intervals.
To find the average velocity for each time interval, apply the formula:
[tex]v=\frac{x_2-x_1}{t_2-t_1}[/tex]
Let's solve for the following:
• (a). From 0 to 2.00 s.
When t = 0, x = 0
When t = 2.00, x = 10 m
Thus, we have:
[tex]\begin{gathered} v=\frac{10-0}{2.00-0} \\ \\ v=\frac{10}{2.00} \\ \\ v=5.0\text{ m/s} \end{gathered}[/tex]
The average velocity over this time interval is 5.0 m/s
• (b). 0 to 4.00 s
When t = 0, x = 0
When t = 4.00, x = 5.0
Thus, we have:
[tex]\begin{gathered} v=\frac{5.0-0}{4.0-0} \\ \\ v=\frac{5}{4} \\ \\ v=1.25\text{ m/s} \end{gathered}[/tex]
The average velocity over this time interval is 1.25 m/s.
• (c). From 2.00 s to 4.00s
When t = 2.00s, x = 10m
When t = 4.00s, x = 5m
Thus, we have:
[tex]\begin{gathered} v=\frac{5-10}{4.00-2.00} \\ \\ v=\frac{-5}{2} \\ \\ v=-2.5\text{ m/s} \end{gathered}[/tex]
The average velocity over this time interval is -2.5 m/s.
• (d). From 4.00s to 7.00s:
When t = 4.00s, x = 5m
When t = 7.00s, x = -5 m
Thus, we have:
[tex]\begin{gathered} v=\frac{-5-5}{7.00-4.00} \\ \\ v=\frac{-10}{3.00} \\ \\ v=-3.33\text{ m/s} \end{gathered}[/tex]
The average velocity over this time interval is -3.33 m/s.
• (e). From 0 to 8.00 s.
When t = 0, x = 0
When t = 8.00s, x = 0
Thus, we have:
[tex]\begin{gathered} v=\frac{0-0}{8.00-0} \\ \\ v=\frac{0}{8} \\ \\ v=0\text{ m/s} \end{gathered}[/tex]
The average velocity over this time interval is 0 m/s.
ANSWER:
• (a). 5.0 m/s
,
• (b). 1.25 m/s
,
• (c). -2.5 m/s
,
• (d). -3.33 m/s
,
• (e). 0 m/s