Answer:
x=-2, y=-4.
Explanation:
Given the system of equations:
[tex]\begin{gathered} x+3y=-14 \\ -x+3y=-10 \end{gathered}[/tex]Add the two equations to eliminate x:
[tex]\implies6y=-24[/tex]Divide both sides by 6 to solve for y:
[tex]\begin{gathered} y=-\frac{24}{6} \\ y=-4 \end{gathered}[/tex]Next, substitute y=-4 into any of the equations to solve for x:
[tex]\begin{gathered} x+3y=-14 \\ x+3(-4)=-14 \\ x-12=-14 \\ x=-14+12 \\ x=-2 \end{gathered}[/tex]The solution to the system is: x=-2, y=-4.