ANSWER
[tex]x=2,\text{ y=1}[/tex]EXPLANATION
Let the hot dog be represented by x,
Let (y) represent soda
For "two hot dogs and three soda costs $7" this means;
[tex]2x+3y=7\ldots\ldots\ldots\ldots1[/tex]For "the cost of four hot dogs and two sodas is $10" we have;
[tex]4x+2y=10\ldots\ldots\ldots..2[/tex]Now, using elimination method, we multiply equation 1 by 2 and equation 2 by 1 so as to eliminate x
Hence, we have;
[tex]\begin{gathered} 2x+3y=7\ldots\ldots\ldots\ldots1\times2 \\ 4x+6y=14\ldots\ldots\ldots.3 \end{gathered}[/tex]Now to eliminate x, we subtract equation 2 from 3
so, we have;
[tex]\begin{gathered} 4x-4x+6y-2y=14-10 \\ 4y=4 \\ y=1 \end{gathered}[/tex]Now substitute the value of y into equation 1 to get x
[tex]\begin{gathered} 2x+3y=7 \\ 2x+3(1)=7 \\ 2x+3=7 \\ 2x=7-3 \\ 2x=4 \\ x=\frac{4}{2} \\ x=2 \end{gathered}[/tex]Therefore the cost of 1 hot dog is $2 while that of soda is $1