Respuesta :

Given

The diameter of the pulley is given as 20''.

The distance between two pulleys is 67''.

Explanation

To determine the total length of belting needed for the pulley .

Use the formula.

[tex]D=2L+(D_L+D_S)\times\frac{\pi}{2}+\frac{(D_L-D_S)^2}{4L}[/tex]

Here L is the distance between two pulleys and DL is the diameter of the larger pulley

DS is the diameter of the smaller pulley.

Substitute the values,

[tex]\begin{gathered} D=2\times67^{\prime}^{\prime}+(20^{\prime}^{\prime}+20^{\prime}^{\prime})\times\frac{\pi}{2}+\frac{(20^{\prime}^{\prime}-20^{\prime}^{\prime})^2}{4\times67^{\prime}^{\prime}} \\ D=134^{\prime}^{\prime}+40^{\prime}^{\prime}\times\frac{\pi}{2}+0 \\ D=134^{\prime}^{\prime}+62.8^{\prime}^{\prime} \\ D=196.8in \end{gathered}[/tex]Answer

Hence the total length of belting needed for the pulley is 196.8 in.

RELAXING NOICE
Relax