Respuesta :

Given:

The function is continuous at x = 4,

[tex]f(x)=\begin{cases}\frac{2x^2-8x}{x-4},x\ne4 \\ k\text{ ,x= 4}\end{cases}[/tex]

As the given function is continous at x = 4,

[tex]\begin{gathered} \lim _{x\to4}f(x)=k \\ \lim _{x\to4}(\frac{2x^2-8x}{x-4})=k \\ \lim _{x\to4}(\frac{2x(x-4)}{x-4})=k \\ \lim _{x\to4}(2x)=k \\ 2(4)=k \\ k=8 \end{gathered}[/tex]

Answer: k = 8

ACCESS MORE
EDU ACCESS