Given
[tex]x>0[/tex]Let's factorize the expression appropriately.
[tex]\sqrt[4]{x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4}=\sqrt[4]{x^{40}\text{ }}^{}[/tex]Now, every time we see an
[tex]x^4[/tex]inside the root, we can take it outside the root as an x. So we'll have
[tex]\sqrt[4]{x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4\cdot x^4}=x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x=x^{10}[/tex]In conclussion
[tex]\sqrt[4]{x^{40}}=x^{10}[/tex]