Answer:
a)
[tex]P(t)=20600(1.05)^t[/tex]b) 30436
Explanation:
An exponential growth function is usually given as;
[tex]P(t)=a(1+r)^t[/tex]where a = initial amount = 20600
r = rate of increase in decimal = 5% = 5/100 = 0.05
t = time in years
a) So a function that models the population t years after 2020 can be written as;
[tex]\begin{gathered} P(t)=20600(1+0.05)^t \\ P(t)=20600(1.05)^t \end{gathered}[/tex]b) In the year 2028, t = 8, let's go ahead and solve for P(8);
[tex]P(8)=20600(1.05)^8=20600(1.47745544379)=30436[/tex]So in the year 2028, the population will be 30436